

© 2001, 2008 Method R Corporation. All rights reserved. 1

MeTHOD R™

Why You Should Focus on LIOs Instead of PIOs

Cary Millsap · Method R Corporation

Executive Summary
Many Oracle educators teach that reducing the number of PIO calls should be the top priority of SQL optimization.
However, in our field work, we commonly eliminate 50% or more of the response time from slow Oracle applica-
tions, even after they’ve been tuned to execute no PIO calls. The secret is that Oracle LIO calls are more expensive
than many people understand. In this paper, I explain the following research results:

• LIO processing is the number-one bottleneck for many business processes today, even on systems with “excel-
lent” database buffer cache hit ratios.

• Excessive LIO call frequency is a major scalability barrier, because LIOs consume two of the system’s most
expensive resources: CPU and latches.

• Even if you could have an infinite amount of memory and achieve a perfect 100% database buffer cache hit
ratio, your system will be inefficient and unscalable if it executes more Oracle LIO calls than it needs to.

• The statistics that database administrators commonly track can lead you to believe that PIO processing is your
bottleneck when it’s not. Do not increase disk or memory capacity until after you determine the impact of PIO
latency upon your end-user response times.

• If you will focus on LIO reduction from the very beginning of a SQL optimization task instead of PIO reduc-
tion, then you will usually eliminate most of your PIOs by side-effect, because most of your PIOs are motivated
by LIO calls in the first place.

Reading from the Buffer Cache is More Expensive than You Might Think
Oracle analysts routinely assume that converting disk reads to memory reads is the key to excellent performance.
Memory access is certainly faster than disk access, but how much faster? One popular text claims that “retrieving
information from memory is over 10,000 times faster than retrieving it from disk” [Niemiec (1999) 9]. This number
makes sense if you compare advertised disk access latencies with advertised memory access latencies:

Typical disk access latency 0.010 000 seconds (10 milliseconds)
Typical memory access latency 0.000 001 seconds (1 microsecond)
Relative performance Memory is 10–2 ÷ 10–6 = 104 = 10,000 times faster

Perhaps reading from memory actually is 10,000 times faster than reading from disk. But it is a mistake to infer
from this hypothesis that reading an Oracle block from memory (the database buffer cache) is 10,000 times faster
than reading an Oracle block from disk. Data from Oracle trace files reveal the truth to be considerably different.

Table 1 (page 12) lists 71 Oracle trace files uploaded to www.hotsos.com by participants in the Hotsos Profiler beta
program.1 In total, these files represent about 2.6 billion Oracle block accesses and over 21 million operating system
read calls. For this sample, fetching an Oracle block from the database buffer cache is only about 37 times faster
than fetching an Oracle block from a database file.

1 In April 2008, Cary Millsap and his team of software developers who had developed the Hotsos Profiler left Hotsos to create a
new company called Method R Corporation, which owns and maintains the software now called the Method R Profiler.

© 2001, 2008 Method R Corporation. All rights reserved. 2

MeTHOD R™

Average latency of reads from disk 0.000 053 seconds + 0.001 913 seconds = 0.001 966 seconds
Average latency of reads from buffer cache 0.000 053 seconds
Relative performance

Retrieving from buffer cache is 0.001 966 ÷ 0.000 053 ≈
37 times faster than retrieving from disk

Retrieving an Oracle block from the buffer cache is not 10,000 times faster than retrieving it from disk. Examination
of real Oracle performance data reveals that the true factor is typically far less than 100. This is of course absurdly
distant from that factor-of-10,000 figure that you might have expected. As you will see, you can save money and
time by understanding how to measure the actual cost of LIOs and PIOs.

Oracle LIO and Oracle PIO
The analysis begins by understanding the definitions of LIO and PIO.

• An Oracle LIO (or logical read call) occurs any time the Oracle kernel requests access to an Oracle block in the
database buffer cache.2 If the kernel cannot find a specified Oracle block in the database buffer cache, then the
LIO motivates an Oracle PIO call. In accounting for LIO elapsed times, we do not include the time spent exe-
cuting the PIO portion of the LIO call. The number of LIO calls for a session is the sum of the values in
v$sesstat for the statistics named “db block gets” and “consistent gets.”

• An Oracle PIO (or physical read call) occurs when the Oracle kernel executes an operating system (OS) read
call for an Oracle database block. In accounting for PIO elapsed times, we include only the time that the Oracle
kernel spends waiting for the execution of the OS read call. A PIO may or may not engage the service of an ac-
tual disk drive; if the OS can fulfill the read call from memory (e.g., disk controller cache or OS buffer cache),
then the PIO will be satisfied without actually incurring the latency of a read from disk. For a single OS call that
reads multiple blocks, each block counts as one PIO. In accounting for PIO elapsed times, we do not include the
time spent executing the LIO that motivated the PIO. The most common type of PIO is counted in the
v$sesstat value for the statistic named “physical reads.”

Shortly, this paper provides a Perl program that will help you measure actual LIO and PIO latencies on your system.

An Oracle LIO Is Not Just “a Memory Access”
An Oracle LIO is far slower than the speed of a single memory access. A typical LIO requires a few dozen to a few
hundred microseconds to execute. The reason is that an Oracle LIO call executes many CPU register and memory
operations, several of which are subject to system-wide serialization (single-threading). Here is a segment of pseu-
docode giving an idea of how much work the Oracle kernel has to do in order to fulfill a LIO call:

2 There are several occasions during which Oracle manipulates database blocks without using the database buffer cache. See [Ad-
ams 2000a].

© 2001, 2008 Method R Corporation. All rights reserved. 3

MeTHOD R™

function LIO(dba, mode, ...)
 # dba is the data block address (file#, block#) of the desired block
 # mode is either ‘consistent’ or ‘current’
 address = buffer_cache_address(dba, ...);
 if no address was found
 address = PIO(dba, …); # potentially a multi-block pre-fetch3
 update the LRU chain if necessary; # necessary less often in 8.1.6
 if mode is ‘consistent’
 construct read-consistent image if necessary, by cloning the block and calling LIO for the appropriate undo blocks;
 increment ‘cr’ statistic in trace data and ‘consistent gets’ statistic in v$ data;
 else (mode is ‘current’)
 increment ‘cu’ statistic in trace data and ‘db block gets’ statistic in v$ data;
 parse the content of the block;
 return the relevant row source;
end

Evaluating what we’re calling the buffer_cache_address function is the key piece of missing information about Ora-
cle internals that allows so many analysts to underestimate the true cost of an Oracle LIO. This function uses a hash
table in Oracle shared memory to determine whether a specified Oracle block is resident in the database buffer
cache. If it’s not, then of course a user’s Oracle process will be required to retrieve the block via an OS read call.
The hash table contains elements called buffer headers arranged in chains called cache buffers chains, each of which
is addressable by a hash key. The hash table looks something like this:



1.925
02841810

1.925
02841898

1.925
02841AB8

1.925
02841C50

0.442
02770FD0

1.268
0284F950

0.499
02772E18

2.514
02850F18

0.6131
0282DE18

0.5107
0280BE18

0.4083
027E9E18

0.1523
02794E18

1.6499
02841CD8

1.6499
02841920

1.6499
02841B40

_db_block_hash_buckets – 1

0

1

2

3

4

To determine whether a given block is in the database buffer cache, the Oracle kernel computes a hashing function
using the desired data block’s address (or dba, which consists of the file number and block number).4 The resulting
index uniquely identifies a chain in the hash table. Oracle knows that a block resides in the database buffer cache if
and only if the block’s buffer header exists in that specific chain. So by searching this cache buffers chain, Oracle
can determine whether the desired block is in the buffer cache. If the kernel finds the desired dba in the chain, then
Oracle accesses the block via the address that is also stored in the buffer header. If the kernel does not find the de-
sired dba in the chain, then it knows it must first read the block (via a PIO call) to put it into the buffer cache before
continuing the LIO.

Once a kernel process has computed a block’s address in the buffer cache, the cost of parsing and manipulating that
block’s content is nontrivial. In fact, the actual use of Oracle block content is the number one consumer of CPU ca-
pacity on any reasonably well optimized Oracle system. Your average LIO latency will vary, depending primarily
upon your CPU speed and the total number of machine instructions required to parse the content of an Oracle block.

3 If the LIO is a participant in an execution plan that can benefit from a multi-block OS read call, then Oracle might pre-fetch
blocks during the read. See [Holt 2000] for more information about read call sizes.
4 For more information about hashing, see [Jenkins 1997] and [Knuth 1973 (506–549)].

© 2001, 2008 Method R Corporation. All rights reserved. 4

MeTHOD R™

For example, an LIO for a full 8KB index leaf block will take longer than an LIO for a 4KB data block that has two
small six-column rows in it. The data in Table 1 show that the LIO portion of an Oracle block manipulation is more
expensive than the PIO portion for several of the files (the PIO portion is, of course, almost universally accepted as
“intolerably expensive”).

Latch Serialization Impacts LIO Latency
The cache buffers chains reside in shared memory, where potentially thousands of Oracle processes expect the abil-
ity to read and write them concurrently. Of course, to prevent corruptions of the hash table, the Oracle kernel de-
signers had to implement a serialization mechanism to prevent two or more Oracle kernel processes from making
conflicting modifications to one hash chain at the same time. As a result, the Oracle kernel serializes its own access-
es to the chain by using a latching protocol. Before a kernel process can modify or even search a cache buffers
chain, the process must first acquire the cache buffers chains latch for that chain. In Oracle releases prior to 8.1,
Oracle uses one cache buffers chains latch per chain. Beginning with release 8.1, one cache buffers chains latch can
cover multiple chains.5

Throughout all Oracle8 releases, only one Oracle process can hold a cache buffers chains latch at a time. If a process
attempts to acquire a latch that is not available (because it is currently held by another process), then the requesting
process must wait until the latch becomes available. Thus, by holding a latch, a writer or even a reader of a cache
buffers chain will block all other prospective readers and writers of every chain protected by that latch.6 We under-
stand that in release 9 a latch holder who only reads a cache buffers chain can share access to its latch with other
readers. This kernel design optimization should provide relief from cache buffers chains latch contention induced by
concurrent readers. However, a writer holding a latch will still block all other prospective readers and writers of
chains protected by that latch. And, of course, readers will continue to block writers.

The way an Oracle kernel process waits for a latch is widely misunderstood. For single-CPU systems, the latch ac-
quisition algorithm is very simple. On a single-CPU system, a process will voluntarily surrender its time slice if it
tests the availability of a latch and determines that it is being held. If another process holds the desired latch, there is
nothing productive that the requesting process can do except stand aside in hopes to allow the latch holder enough
CPU time to complete its serialized work and release the latch.

For multi-CPU systems, the latch acquisition algorithm is more complicated:
function get_latch(latch)
 # multi-CPU implementation
 increment gets;
 if fastget_latch(latch) return true;
 increment misses;
 for try = 0 to +infinity
 for spin = 1 to _spin_count
 if fastget_latch(latch) return true;
 t0 = current wall time;
 sleep for min(f(try), _max_exponential_sleep) centiseconds;
 t1 = current wall time;
 increment sleeps and sleep[try];
 register 10046 level-8 event “latch free” for ela = t1 – t0;
end

5 For an excellent article on this feature, see [Adams 2000b].
6 In the context of this discussion, the reader of a chain is a process that searches the chain to test for the existence of a specified
buffer header. The writer of a chain is a process that somehow modifies the content of the chain, for example, either by inserting
into the chain or deleting from the chain.

© 2001, 2008 Method R Corporation. All rights reserved. 5

MeTHOD R™

function fastget_latch(latch)
 if test(latch) shows that latch is available
 if test_and_set(latch) is successful
 return true;
 return false;
end

If a process determines that a latch is unavailable, then on a multi-CPU system it is fair for the process to hope that
the latch holder might be able to complete its serialized work on another CPU and release the desired latch within
just a few microseconds. So, rather than endure the performance penalty of volunteering for a context switch right
away (which would typically result in about a 10-millisecond sleep), the process will spin for the latch.

When a process spins for a latch, it executes a tight loop of repeated test operations upon the latch. If the latch be-
comes available during the spin, then the process will detect that availability immediately and acquire the latch. If
the process does a fastget for _spin_count iterations without finding the latch available, then the process will volun-
tarily sleep for a specified number of milliseconds. By sleeping, the process notifies the operating system that it is
volunteering itself for a context switch. When the sleep completes and the process is granted a new CPU time slice,
the process will “try” again with another spin for the latch. If the second spin completes without making the acquisi-
tion, then the process will sleep again, and so on. As the number of tries for a latch acquisition increases, the sleep
durations usually increase as well.7

The algorithm beneath our buffer_cache_address pseudocode function described earlier has some important perfor-
mance vulnerabilities. Most obviously, the time it takes to search a chain for a block is proportional to the length of
that chain—longer chains degrade performance. There are two ways that a chain can become longer. First, there’s
bad luck. Anytime there are fewer chains than there are buffers in the database buffer cache, there will necessarily
be collisions, in which two or more data block addresses will hash to the same chain. You can see an example of this
collision phenomenon within chain 0 in the example picture shown earlier, where blocks 0.6131, 0.5107, 0.4083,
and 2.514 (these are shown in file#.block# format) all hash to the same chain. Second, even when there are as many
chains as there are buffers,8 the chains can still grow long. This phenomenon is a side-effect of how Oracle imple-
ments read consistency.

Here is how it happens. Whenever Oracle executes a read, there is a possibility that the block being read has been
modified since the time when the query began. If the LIO is a consistent mode read, then the Oracle kernel takes the
appropriate steps to revert its target block’s contents to the appropriate point in history. When a process detects that
a block’s contents have changed since that process’ query began, it creates a clone of that block in the database buff-
er cache. The session then applies the appropriate undo to the clone that is required to revert the block’s content to
the way it appeared at the appropriate point in history. The problem is this: all the clones of a given block will al-
ways hash to exactly the same cache buffers chain, because they all share a single data block address. On systems
that generate a lot of block clones, there will necessarily be growth in the length of one or more cache buffers
chains. You can see an example of this type of collision within chain 3 in the example picture shown earlier, where
several clones of block 1.925 coexist on the same chain.

Long chains degrade end user response times in several ways. First, long chains increase the number of machine
instructions required for chain searches. Second, longer search durations mean holding cache buffers chains latches
for longer durations; therefore, processes trying to acquire a latch will tend to consume more CPU time spinning for
that latch. Third, the resulting latch contention introduces sleeps from “latch free” waits into the response time. The
new shared latch design of Oracle9i should help to reduce the negative impact of the response time consumed by
spinning and sleeping, but not the time consumed searching the chain (and of course, not the time consumed simply
processing the content of the Oracle data block).

7 The dominant reasons that latch sleep durations recorded in a 10046 level-8 trace file may appear not to increase as the try
count increases are: (1) coarse timer granularity can cause both latency overestimates and latency underestimates to appear in the
trace file; (2) latch sleep durations are apparently Oracle port-specific.
8 That is, when you have set _db_block_hash_buckets to a number greater than or equal to your setting of
db_block_buffers….

© 2001, 2008 Method R Corporation. All rights reserved. 6

MeTHOD R™

How to Measure LIOs and PIOs Operationally
Measuring the performance impact of LIOs, PIOs, and cache buffers chains latch contention is straightforward with
the following Perl program:9
 1 #!/usr/bin/perl
 2 # lio - summarize LIO and PIO statistics from 10046 level-8 trace file
 3 # Cary Millsap
 4 # (c) 2001, 2008 Method R Corporation
 5
 6 use warnings;
 7 use strict;
 8
 9 my $ORACLE_RELEASE = 8; # use 7, 8, or 9
 10 my $CBCid = 66;
 11 # use "select latch# from v$latchname where name='cache buffers chains'"
 12
 13 my ($trcfile) = @ARGV or die "Usage: $0 trcfile\n";
 14 open TRCFILE, "<$trcfile" or die "$0: can't open '$trcfile' ($!)";
 15 my ($nLIO, $cLIO) = (0, 0);
 16 my ($nPIO, $ePIO) = (0, 0);
 17 my ($nSLP, $eSLP) = (0, 0);
 18 while (<TRCFILE>) {
 19 if (/^(PARSE|EXEC|FETCH|UNMAP).*c=(\d+).*cr=(\d+),cu=(\d+)/i) {
 20 $cLIO += $2;
 21 $nLIO += ($3 + $4);
 22 # print "c=$cLIO, n=$nLIO: $_"; # for debugging, testing
 23 }
 24 elsif (/^WAIT.*nam='db file.*read' ela=\s*(\d+).*p3=(\d+)/i) {
 25 $ePIO += $1;
 26 $nPIO += $2;
 27 # print "e=$ePIO, n=$nPIO: $_"; # for debugging, testing
 28 }
 29 elsif (/^WAIT.*nam='latch free' ela=\s*(\d+).*p2=$CBCid/i) {
 30 $nSLP ++;
 31 $eSLP += $1;
 32 # print "e=$eSLP, n=$nSLP: $_"; # for debugging, testing
 33 }
 34 }
 35 if ($ORACLE_RELEASE >= 9) {
 36 $cLIO *= 0.000_001;
 37 $ePIO *= 0.000_001;
 38 $eSLP *= 0.000_001;
 39 } else {
 40 $cLIO *= 0.01;
 41 $ePIO *= 0.01;
 42 $eSLP *= 0.01;
 43 }
 44 my $fmt0 = "%-35s %16s %15s %16s\n";
 45 my $fmt1 = "%-35s %15.2fs %15d %15.6fs\n";
 46 printf $fmt0, "Event", "Duration", "# Calls", "Dur/Call";
 47 printf $fmt0, "-"x35, "-"x16, "-"x15, "-"x16;
 48 printf $fmt1, "LIO call CPU time", $cLIO, $nLIO, $nLIO?$cLIO/$nLIO:0;
 49 printf $fmt1, "PIO call elapsed time", $ePIO, $nPIO, $nPIO?$ePIO/$nPIO:0;
 50 printf $fmt1, "Cache buffers chains latch sleeps", $eSLP, $nSLP, $nSLP?$eSLP/$nSLP:0;
 51 close TRCFILE or die "$0: can't close '$trcfile' ($!)";

Note that the program shown here will overestimate LIO latency (1) for applications that consume a lot of CPU ca-
pacity executing parse calls, and (2) for applications that consume a lot of CPU capacity doing PL/SQL or SQLJ
language processing. Of course, if your database spends a lot of time parsing, then you should try to reduce the
number of parse calls that your application requires. If your database spends a lot of time doing language processing,
then you should carefully consider moving that application logic to a middle tier, where scalable CPU capacity is
much less expensive than it is in your database.

9 See [Nørgaard 2000] for an introduction to producing the Oracle 10046 level-8 trace data that this program requires.

© 2001, 2008 Method R Corporation. All rights reserved. 7

MeTHOD R™

A Great Buffer Cache Hit Ratio Doesn’t Mean Great Performance
One strong Oracle tuning tradition holds that the higher the database buffer cache hit ratio, the better the perfor-
mance of the database. If you first minimize the number of LIO calls that an application makes, then you can gener-
ally improve response times if you use a bigger database buffer cache to convert LIO+PIO calls into bare LIOs.
However, two popular ideas about the database buffer cache hit ratio are deeply flawed:

Not true: “A high buffer cache hit ratio corresponds to good system performance.”
Not true: “The buffer cache hit ratio is a useful measure of SQL statement efficiency.”

If the first conjecture were true, then we would expect for the database buffer cache hit ratios to be low for Oracle
programs with performance problems. Yet, in our field work, we find that high cache hit ratios are not reliable indi-
cators of good performance. For example, Table 1 represents 71 trace files uploaded to www.hotsos.com by custom-
ers with performance problems. The buffer cache hit ratios of these files are all over the map. Notably, in 37 of our
71 performance problem cases, the database buffer cache hit ratio already exceeds 99%:

Range File count
0% ≤ hit ratio < 90% 18

90% ≤ hit ratio < 99% 16
99% ≤ hit ratio < 99.9% 27

99.9% ≤ hit ratio < 99.99% 7
99.99% ≤ hit ratio < 100% 3

The second conjecture is dangerous because it can lead people to perceive an extremely inefficient SQL statement as
“well-tuned.” Earlier this year, I published some common examples of SQL statements that become immensely fast-
er and more efficient after executing steps that actually reduce each statement’s buffer cache hit ratio [Millsap
2001]. The database buffer cache hit ratio is a good indication of how efficiently the Oracle instance is serving the
SQL application sitting atop it in the stack. Unfortunately, the database buffer cache hit ratio can mislead you if your
application itself is the source of the inefficiency.

I have found that performance problems are most often the result of excessive LIO counts. The philosophy of “high-
er hit ratios are better” has one very critical flaw at its core: the ratio appears the most excellent when a system exe-
cutes an excessive number of LIOs. This is why the best Oracle performance analysts I’ve known since 1990
actually count on high cache hit ratios as reliable indicators of performance problems. I strenuously object to using a
good database buffer cache hit ratio as a measure of good system performance, because it motivates system owners
to purchase disk or memory upgrades in situations in which it would have been cheaper to reduce excessive LIO call
counts.

PIOs Might Not Be Your Bottleneck
My aim in this paper is not to convince you that it’s okay to have SQL statements in your application that generate
too many PIOs. LIO+PIO calls are of course more expensive than bare LIO calls, for reasons including the follow-
ing:

• Disks are slower than memory, especially if you configure those disks poorly or load them up with so much
data that you exceed their effective throughput capacity (e.g., [Millsap 1996; Millsap 2000]).

• PIO calls do require some CPU service time (e.g., for memory-to-memory copying). There is speculation about
how much CPU time a PIO requires. The number of machine instructions required to execute a PIO will vary
depending upon your I/O subsystem architecture (e.g., whether you use raw or buffered I/O).

• During a PIO call, an Oracle kernel process executes an OS read call, which volunteers the process for a context
switch. On a busy system with lots of competition for CPU service, each context switch can account for several
milliseconds of elapsed time. (Of course, a likely reason for a system to be so busy in the first place is a waste-
fully large number of Oracle LIO calls.)

• Even when an Oracle PIO results in only a memory read (e.g., from an OS buffer cache), the Oracle kernel pro-
cess doing the read will generally have to modify two cache buffers chains: (1) it will delete from the chain con-

© 2001, 2008 Method R Corporation. All rights reserved. 8

MeTHOD R™

taining the buffer header of least-recently-used block that will be evicted from the buffer cache, and (2) it will
insert into the chain that will contain the buffer header for the newly acquired block.

However, recognizing when your PIO calls are actually not your performance problem can prevent you from buying
disks or memory in situations where faster disks and more memory won’t help your performance.

The data in Table 1 show that the average PIO latency across 71 trace files is only about two milliseconds. Consider-
ing typical advertised disk latencies, this statistic is remarkable. These days a 10-millisecond read is about average
for sites with reasonably cheap disks. Sites with fast disks experience read latencies in the 5-millisecond range. Yet
the average PIO latency is less than 2 milliseconds in 25 of our 71 situations, all of which represent problem per-
formance! How is this possible?

There are several factors that can drive the average Oracle PIO latency below the physical disk latencies that we all
expect. First, a PIO does not necessarily represent a read from disk. Many I/O subsystems today have cache at sev-
eral architectural layers, including OS, controller, and disk cache. These caches are designed specifically to maxim-
ize the probability that an application’s OS read call would be satisfied from memory, without having to wait for a
retrieval from an actual physical disk. Ironically, applications with the most inefficient SQL execution plans—ones
that revisit some set of blocks an enormous number of times—are the most likely applications to benefit from the
latency-reducing benefits of these caches. But as we’ll see shortly, feeding more cache to an inefficient execution
plan is a dreadfully bad economic decision.

Second, when Oracle executes a multi-block read, the expensive I/O setup operations (the seek and rotational posi-
tioning operations) are shared across multiple blocks. For example, a 20-block read might consume only about four
times as much elapsed time as a 1-block read. In this case, each block that came into the cache via the 20-block read
will have an average latency that is only about 20% of the expected latency for a 1-block read.

In my career, I have visited many Oracle customers who had spent vast sums of money upgrading their disk I/O
capacity with no perceptible improvement in user response times. Typically, these customers determined that, be-
cause their number of Oracle PIO operations was very high, buying either more disks or faster disks would provide a
performance benefit. In many of these cases, however, their PIO latencies were so low to begin with that there was
no way these customers would reduce the latencies further, no matter how much hardware expenditure they allocat-
ed. In several cases, the total contribution of PIO calls to user response time was so negligible that even reducing
PIO latencies by 100% would have created no perceptible difference in user response times.

Do you have a physical I/O bottleneck on your system? Chances are that if any of the following is true, then some-
body at your business probably thinks that you do:

• Your disk utilization figures are high.

• Your disk queue lengths are long.

• Your average read or write latency is high.

If you suspect that you have a physical I/O bottleneck for any of these reasons, do not upgrade your disk subsystem
until you figure out how much impact your Oracle PIO latencies have upon user response time. For example, what
impact would a disk upgrade have upon the application with the following resource profile?

Oracle Kernel Event Duration Calls Dur/Call
---------------------------------- --------------------- --------------- -------------
CPU service 48,946.72s 98.0% 192,072 0.254835s
db file sequential read 940.09s 1.9% 507,385 0.001853s
SQL*Net message from client 60.90s 0.1% 191,609 0.000318s
latch free 2.17s 0.0% 171 0.012690s
SQL*Net message to client 1.32s 0.0% 191,609 0.000007s
SQL*Net more data to client 0.06s 0.0% 778 0.000077s
file open 0.01s 0.0% 7 0.001429s
---------------------------------- --------------------- --------------- -------------
Total 49,951.27s 100.0%

The process behind this profile ran at one customer site for almost 14 hours. The profile depicts an Oracle session
that has executed 507,385 Oracle PIOs. From the PIO count alone, one might infer that a disk upgrade could save
the system. However, look at the total response time attributable to PIOs: it’s only 1.9% of the total execution time
of the program. Imagine what could have happened…

© 2001, 2008 Method R Corporation. All rights reserved. 9

MeTHOD R™

Dear Analyst:

We all just wanted to thank you for your work in optimizing our system. Thanks to the $250,000 emergen-
cy disk upgrade you recommended to the Board, we have been able to slash our physical I/O processing
time by about 50%. The resulting improvement to the response time of the key business process we were
trying to optimize was a whopping nine tenths of one percent.

 Yours truly, …

The fact that there were over half a million PIOs generated by this session is irrelevant to improving its perfor-
mance. The problem with this program is all CPU consumption. This program consumed almost 14 hours of elapsed
time because it executed 1,342,856,404 LIOs, at approximately 0.000 036 seconds per call.10 Those “memory ac-
cesses” are not so cheap when you execute 1.3 billion of them. The database buffer cache hit ratio, by the way, was
an “outstanding” 99.9622%. The very fruitful plan of attack that our customer chose was to reduce the response time
of the session to just a few minutes by modifying an execution plan to eliminate over a billion LIO calls.

Again, don’t get me wrong; I’m not advocating that you take a cavalier attitude toward PIOs. But remember:

If your total time spent executing PIOs is only a small percentage of your total response time,
then don’t waste your time trying to “tune” your PIO processing.

You’ll see shortly that the best way to reduce most Oracle applications’ response times is to eliminate Oracle LIOs,
which also happen to eliminate PIOs by side-effect.

More Memory Is Often Not the Best Solution Either
Wouldn’t it be nice if we could install an infinite amount of memory into an Oracle system? Then perhaps all of our
performance problems would go away. Unfortunately, it’s not true. Here’s a proof. First, let’s assume briefly that
there is no time cost involved in loading an entire, huge database into a colossal database buffer cache (of course this
assumption is not true, but for the sake of argument, let’s say that it is). Now that all the Oracle data blocks we’ll
ever need are already in the buffer cache, we’ll never need to visit a disk again (filthy spinning rust11 anyway!).

Unfortunately though, we have already seen empirical evidence that even after eliminating Oracle PIO calls, the
resulting “memory reads” are neither free nor particularly cheap. Applications that execute wastefully many Oracle
LIO calls can consume hours of unnecessary CPU time, a few tens of microseconds at a time. Eliminating PIOs en-
tirely can still leave us with an application that chews up a CPU for hours.

For memory upgrades, I offer the same advice that I mentioned earlier in our disk upgrade discussion. If you believe
that you should increase the size of your database buffer cache to reduce your Oracle PIO call frequency, do not
upgrade your memory until you figure out how much impact your Oracle PIO latencies have upon user response
time. The same example we used above shows why. In this case, we could spend money to eliminate every single
PIO call in the program. However, doing so would have reduced the program’s response time only from 13.6 hours
to 13.3 hours. If your LIO count is high, then instead of buying memory, try to eliminate Oracle LIOs. Get rid of the
LIOs, and you’ll eliminate PIOs by side-effect; PIOs go away if the LIOs that motivated them are eliminated.

How to Eliminate LIOs
When either CPU service or waits for “latch free” is a big part of your users’ response times, then you probably have
an LIO problem.12 If you do, then the most economically efficient way to solve the problem is probably to optimize
the SQL that causes too many LIOs. A high-LIO SQL statement running in one program at a time is a problem for
one user who is waiting for the program’s output. It’s possibly a problem for other users as well, if they are compet-
ing for scarce CPU and latch resources with the high-LIO statement. A high-LIO statement running in dozens of
concurrent programs is a catastrophic problem for everyone. In both problems, it is difficult to make any real pro-

10 You can’t determine this session’s LIO count, LIO latency, or buffer cache hit ratio by looking only at the resource profile data
that I have shown here. I used the Perl program shown earlier to compute those additional values. The number of calls shown in
this table (192.072) is actually the number of parse, execute, fetch, and unmap calls described in the trace data.
11 I acknowledge learning the term “spinning rust” from my friend Mark Farnham of Rightsizing, Inc.
12 It is possible that you have a parsing problem. For discussions about parsing problems, see [Holt & Millsap 2000; Engsig
2001].

© 2001, 2008 Method R Corporation. All rights reserved. 10

MeTHOD R™

gress by masking the issue by manipulating memory or disks. The permanent long-term solution is to eliminate un-
necessary LIOs.13

It’s not so hard to do. Step one: focus your attention upon LIO reduction, not PIO reduction. Stop measuring per-
formance by watching your database buffer cache hit ratio, especially for individual SQL statements. When you
look at tkprof output, pay attention to the query and current columns.14 When you look at v$sql, pay attention
to the buffer_gets column. Don’t stop optimizing if a query consumes more than 100 LIOs per row returned,15
even if you’ve figured out how to reduce the PIO count for the query to zero. Lookups and simple joins should re-
quire fewer than 10 LIOs per row returned.

By eliminating LIOs first (before you try to reduce the PIO count), you will save time and money, because you’ll be
reducing the fundamental unit of work in Oracle from which most resource consumption derives. Remember, a pro-
gram can have a PIO count of zero and still run for hours. But a program with a low LIO count will consume only a
small amount of CPU service, a small number of latch acquisitions, and of course a necessarily small number of
PIOs as well, because a small number of LIOs will nearly always motivate only a small number of PIOs. Only after
you have optimized the LIO requirement of an Oracle program should you consider a memory of disk upgrade.

The query optimization software in the Oracle kernel gets smarter with every release (for an interesting article on
this subject, see [Gorman 2001]). But still, the Oracle performance analyst will encounter systems in which the
number one cause of performance trouble is poor query optimization. Some of the more common mistakes that we
see in the field include:

• Executing unnecessary business functions. There is no more efficient or effective system optimization technique
than to determine that a business is expending scarce system resources to produce output that either nobody
looks at, or output whose business function can be suitably replaced by less expensive output. Performance ana-
lysts who isolate themselves from the functional requirements of a business application also isolate themselves
from opportunities to eliminate unnecessary business functions. To optimize workload, you must understand the
business of that workload.

• Carrying massive amounts of row source data through several stages of a complicated execution plan, only to
filter out most of the rows in a late stage of the plan. Use hints and stored outlines if you must, but force Oracle
to filter data as early in an execution plan as you can.

• The idea that all full-table scans are bad. Full-table scans are efficient in their place; use them when they are
more efficient than index-driven plans. If you are in doubt about whether a full-table scan is efficient, test it.

• The idea that all nested loops plans are good. Nested loops execution plans are notorious for driving “excel-
lent” database buffer cache hit ratios, because they tend to revisit the same Oracle blocks over and over again.
Replacing nested loops plans with other joins (full-table scans driving either hash joins or sort-merge joins, for
example) can sometimes result in spectacular performance improvements.

• Failure to use array processing. Fetching data one row at a time also drives “excellent” database buffer cache
hit ratios, because they also tend to cause Oracle to revisit the same blocks over and over again. Using Oracle
array operations will reduce not only LIO frequencies, but often enormous amounts of network traffic as well.

Conclusion
In system optimization and capacity planning exercises since 1990, several of my colleagues and I have created reli-
able SQL performance forecasts by using the assumption that a LIO+PIO operation costs about 100 times as much

13 One way to remember that eliminating LIO calls should be the focus of your SQL optimization job is to write this on your
board at work: “High LIO SQL, away!” I once saw this scrawled onto Dan Tow’s office whiteboard at Oracle Corporation in the
mid 1990s. I found this expression to be desperately corny but sufficiently unforgettable as to serve me faithfully, even through
my recent years of accelerated aging and stress-related memory degradation. The phrase is a pun upon the tag line of the legend-
ary American wild-west hero, the Lone Ranger, who would say to his horse named Silver when it was time to leave, “Hi Yo Sil-
ver, away!”
14 If you look at Profiler output instead, then pay attention to the LIO Blks column.
15 All ratios are prone to fallacies, and this one is no exception. For queries that return aggregated data (sum, count, min, max,
etc.), the acceptable limit of this ratio is of course much higher.

© 2001, 2008 Method R Corporation. All rights reserved. 11

MeTHOD R™

as a bare LIO. However, many people believe that the relative cost is 10,000-to-1. Fortunately, the average latencies
of LIO+PIO and bare LIO for an Oracle session are simple to compute. In this paper, I have explained how to use
easily obtainable operational data to determine for certain which ratio is closer to the truth. In 71 trace files uploaded
to www.hotsos.com, the relative performance difference is only a factor of 37. The average LIO latency in our test
data is about 50 microseconds; that is, Oracle LIOs execute at a typical pace of only about 20,000 per second. The
average PIO latency in our data is about 2 milliseconds, which is faster than typical disk hardware latencies because
of the effects of various I/O subsystem memory buffers.

The “myth of 10,000” is more than just an inconsequential technical detail. The myth is dangerous because it moti-
vates performance analysts to make a dreadful mistake: to assume that you can optimize a system by eliminating
PIOs. On the contrary, the most important optimization goal for the Oracle performance analyst is to reduce LIO
counts. Even if you could install 1-millisecond disks and an infinite amount of memory for your database buffer
cache, your Oracle system performance would be constrained as it probably is now, by the CPU capacity required to
process all of your application’s LIO calls.

In the field, Oracle performance analysts who focus on LIO reduction routinely eliminate 50% or more of the CPU
and elapsed time required to perform key business functions. Not only does LIO call reduction yield a beneficial
impact upon CPU consumption, but it eliminates potentially large segments of user response time wasted on “latch
free” events. Even systems with no PIO calls can waste tens of hours of CPU time per day if they execute too many
LIO calls. Ironically, systems with extremely high (99%+) database buffer cache hit ratios are especially good can-
didates for LIO call reduction.

References
ADAMS, S. 2000a. Calculating the Cache Hit and Miss Rates. Ixora: http://www.ixora.com.au/tips/tuning/-

cache_miss.htm.
ADAMS, S. 2000b. “cache buffers chains latches.” Ixora News. Nov 2000. http://www.ixora.com.au/newsletter/-

2000_11.htm#hash_latches.
ENGSIG, B. 2001. Efficient Use of Bind Variables, cursor_sharing and Related Cursor Parameters. Oracle White

Paper: http://otn.oracle.com/deploy/performance.
GORMAN, T. 2001. The Search for Intelligent Life in the Cost-Based Optimizer. Evergreen Database Technologies:

http://www.evdbt.com/library.htm.
GURRY, M.; CORRIGAN, P. 1996. Oracle Performance Tuning. 2d ed. Sebastopol CA: O’Reilly & Associates.
HOLT, J. 2000. Predicting Multi-Block Read Call Sizes. http://www.hotsos.com.
HOLT, J.; MILLSAP, C. 2000. Scaling Applications to Massive User Counts. Hotsos: http://www.hotsos.com.
HOTKA, D. 2000. Oracle8i from Scratch. Indianapolis IN: Que.
JENKINS, R. J. JR. 1997. Hash Functions for Hash Table Lookup. Bob Jenkins: http://burtleburtle.net/bob/hash/-

evahash.html.
KNUTH, D. E. 1973. The Art of Computer Programming. Vol. 3: Sorting and Searching. Reading MA: Addison-

Wesley.
MILLSAP, C. 1996. Configuring Oracle Server for VLDB. Method R Corporation: http://method-r.com.
MILLSAP, C. 2000. Is RAID 5 Really a Bargain? Hotsos: http://www.hotsos.com.
MILLSAP, C. 2001. Why 99%+ Database Buffer Cache Hit Ratio is NOT Ok. Hotsos: http://www.hotsos.com.
NIEMIEC, R. 1999. Oracle Performance Tuning Tips & Techniques. Berkeley CA: Osborne/McGraw Hill.
NØRGAARD, M. 2000. Introducing Oracle’s Wait Interface. Hotsos: http://www.hotsos.com.

Acknowledgments
Sincerest thanks go to Jeff Holt for the research, development, and direct support that made this paper possible. I
also want to thank Steve Adams, Jeff Holt, Bjørn Engsig, Mogens Nørgaard, Anjo Kolk, Jonathan Lewis, Gary
Goodman, Charles Peterson, Dan Norris, and my wife for services including provision of information, encourage-
ment, inspiration, and proofreading. Finally, thank-you to all my Hotsos Clinic students, various presentation audi-
ences, and the friends whom I meet in Denmark each year, who have inspired me to study the data instead of just
executing the much easier task of simply writing what feels right at the time.

© 2001, 2008 Method R Corporation. All rights reserved. 12

MeTHOD R™

About the Author
Cary Millsap is the founder and president of Method R Corporation, a small business that builds and optimizes
software all over the world (http://method-r.com). Cary designs and writes software and educational material. He is
the author of Optimizing Oracle Performance (O’Reilly 2003), for which he and Method R colleague Jeff Holt were
named Oracle Magazine’s Authors of the Year. He has presented at hundreds of conferences and courses world-
wide, and he is also published in Communications of the ACM.

At the time this paper was originally written, Mr. Millsap was a limited partner of Hotsos Enterprises, Ltd. Prior to
that, he served for ten years at Oracle Corporation as a leading system performance expert, where he founded and
served as vice president of the System Performance Group. He has educated thousands of Oracle consultants, sup-
port analysts, developers, and customers in the optimal use of Oracle technology through commitment to writing,
teaching, and public speaking. While at Oracle, Mr. Millsap improved system performance at over 100 customer
sites, including several escalated situations at the direct request of the president of Oracle. He served on the Oracle
Consulting global steering committee, where he was responsible for service deployment decisions worldwide.

Tables
Table 1. Summarized LIO and PIO statistics from 71 Oracle trace files uploaded to www.hotsos.com. Each of the

files represents some kind of system performance problem on operating systems including Linux, Microsoft
Windows, OpenVMS, and several variants of Unix.

File id LIO count Total seconds
LIO duration

Avg. seconds
LIO duration

(RLIO)
PIO count Total seconds

PIO duration

Avg. seconds
PIO duration

(RPIO)

Buffer cache
hit ratio

1 164,964 162.28 0.000 984 71,181 24.82 0.000 349 56.851%
2 5,860,106 344.80 0.000 059 686,832 4,723.98 0.006 878 88.280%
3 779,084 294.04 0.000 377 11,743 91.22 0.007 768 98.493%
4 53,187,700 6,174.17 0.000 116 81,259 1,747.53 0.021 506 99.847%
5 8,707 24.16 0.002 775 60 0.81 0.013 500 99.311%
6 1,603 0.30 0.000 187 26 0.41 0.015 769 98.378%
7 38,104 0.88 0.000 023 740 0.06 0.000 081 98.058%
8 165,124 3.00 0.000 018 2,011 1.92 0.000 955 98.782%
9 2,180,601 44.59 0.000 020 17,032 34.20 0.002 008 99.219%

10 158,682,835 813.55 0.000 005 51,761 57.35 0.001 108 99.967%
11 29,167,084 594.78 0.000 020 200,096 156.14 0.000 780 99.314%
12 2,572,801 430.07 0.000 167 1,413 0.83 0.000 587 99.945%
13 24,807 4.21 0.000 170 1,413 0.83 0.000 587 94.304%
14 4,478 0.33 0.000 074 4,384 0.16 0.000 036 2.099%
15 490,768 58.15 0.000 118 489,998 29.50 0.000 060 0.157%
16 3,409 0.31 0.000 091 3,019 18.81 0.006 231 11.440%
17 78,070 7.85 0.000 101 209 1.55 0.007 416 99.732%
18 6,349,842 204.66 0.000 032 27,457 172.26 0.006 274 99.568%
19 11,079,353 323.34 0.000 029 45,091 279.35 0.006 195 99.593%
20 2,142,167 389.85 0.000 182 782 5.76 0.007 366 99.963%
21 7,004,605 288.44 0.000 041 11,817 66.85 0.005 657 99.831%
22 124,128 9.12 0.000 073 123,335 173.45 0.001 406 0.639%
23 4,475,944 436.59 0.000 098 40 0.30 0.007 500 99.999%
24 1,214 0.40 0.000 329 41 0.08 0.001 951 96.623%
25 9,034,310 2,495.74 0.000 276 86,870 1.53 0.000 018 99.038%
26 23,822 13.71 0.000 576 13,407 2.11 0.000 157 43.720%
27 7,643,132 680.02 0.000 089 36,116 358.88 0.009 937 99.527%
28 14,213,571 1,636.09 0.000 115 73,633 818.00 0.011 109 99.482%
29 3,615,049 263.35 0.000 073 38,070 421.44 0.011 070 98.947%
30 12,813,884 1,606.62 0.000 125 56,367 684.10 0.012 137 99.560%
31 10,329,286 1,182.33 0.000 114 35,748 438.05 0.012 254 99.654%
32 2,126 0.63 0.000 296 52 0.25 0.004 808 97.554%
33 1,015,254 95.48 0.000 094 2,579 4.31 0.001 671 99.746%
34 610,857 20.87 0.000 034 3,626 20.26 0.005 587 99.406%
35 2,174,936 391.82 0.000 180 1,072,619 439.58 0.000 410 50.683%
36 3,350,477 196.00 0.000 058 16,404 65.21 0.003 975 99.510%
37 5,854,019 2,437.18 0.000 416 2,332,271 2,365.57 0.001 014 60.159%
38 2,906,917 45.95 0.000 016 129,870 19.85 0.000 153 95.532%
39 277,190,690 1,885.76 0.000 007 116,643 21.23 0.000 182 99.958%
40 58,639 62.27 0.001 062 58,623 154.76 0.002 640 0.027%
41 315,342 10.88 0.000 035 1,095 7.53 0.006 877 99.653%

© 2001, 2008 Method R Corporation. All rights reserved. 13

MeTHOD R™

File id LIO count Total seconds
LIO duration

Avg. seconds
LIO duration

(RLIO)
PIO count Total seconds

PIO duration

Avg. seconds
PIO duration

(RPIO)

Buffer cache
hit ratio

42 1,267,286 48.11 0.000 038 23 0.31 0.013 478 99.998%
43 28,575 2.25 0.000 079 1,618 28.29 0.017 485 94.338%
44 132,650 15.85 0.000 119 5,666 119.72 0.021 130 95.729%
45 3,069,592 309.69 0.000 101 3,044,861 1,120.60 0.000 368 0.806%
46 45,398,641 8,193.07 0.000 180 8,080,721 3,379.65 0.000 418 82.201%
47 2,339,664 194.91 0.000 083 66,478 246.92 0.003 714 97.159%
48 197,500 42.57 0.000 216 30,582 22.87 0.000 748 84.515%
49 22,440 1.93 0.000 086 646 2.43 0.003 762 97.121%
50 838,077 7.93 0.000 009 973 7.08 0.007 276 99.884%
51 973 0.39 0.000 401 274 1.67 0.006 095 71.840%
52 257,700,995 26,342.51 0.000 102 344,374 1,500.57 0.004 357 99.866%
53 26,356,546 1,922.79 0.000 073 81,397 289.03 0.003 551 99.691%
54 1,562,353 172.46 0.000 110 5,961 31.86 0.005 345 99.618%
55 14,792,366 1,541.25 0.000 104 62,495 432.03 0.006 913 99.578%
56 2,210,815 556.55 0.000 252 368,409 911.65 0.002 475 83.336%
57 1,802,938 333.15 0.000 185 1,235,921 10,249.16 0.008 293 31.450%
58 206,152 0.33 0.000 002 175 6.61 0.037 771 99.915%
59 6,870,242 630.20 0.000 092 488,534 730.28 0.001 495 92.889%
60 49,429,232 1,559.51 0.000 032 5,529 70.14 0.012 686 99.989%
61 400,597 79.09 0.000 197 317,030 4,617.67 0.014 565 20.861%
62 14,149 0.30 0.000 021 106 0.26 0.002 453 99.251%
63 71,836 6.28 0.000 087 791 0.54 0.000 683 98.899%
64 1,867,400 100.69 0.000 054 7,528 453.92 0.060 298 99.597%
65 205,375,476 21,887.47 0.000 107 563,687 1,679.61 0.002 980 99.726%
66 6,437,624 1,726.31 0.000 268 446 7.03 0.015 762 99.993%
67 1,342,856,404 48,946.79 0.000 036 507,286 938.80 0.001 851 99.962%
68 1,879,582 95.92 0.000 051 17,570 101.69 0.005 788 99.065%
69 3,833,679 362.58 0.000 095 60,244 202.79 0.003 366 98.429%
70 35,292,970 2,149.32 0.000 061 128,214 523.44 0.004 083 99.637%
71 1,839,819 625.86 0.000 340 375,404 438.18 0.001 167 79.596%

Total 2,649,836,382 141,490.63 21,708,676 41,525.63
Average 0.000 053 396 0.001 912 859 99.181%

Revision History
12 November 2001: Original revision produced to accompany live presentation at Oracle OpenWorld 2001.

15 November 2001: Reformatting and minor editing.

18 October 2002: Corrected timing unit computations in the Perl code.

19 February 2013: Edited to reflect the 2008 changes in author affiliation and copyright ownership.

